genkitx-aws-bedrock

Firebase Genkit + AWS Bedrock

Firebase Genkit <> AWS Bedrock Plugin

AWS Bedrock Community Plugin for Google Firebase Genkit

GitHub version NPM Downloads GitHub License Static Badge
GitHub Issues or Pull Requests GitHub Issues or Pull Requests GitHub commit activity

genkitx-aws-bedrock is a community plugin for using AWS Bedrock APIs with Firebase Genkit. Built by Xavier Portilla Edo.

This Genkit plugin allows to use AWS Bedrock through their official APIs.

Install the plugin in your project with your favorite package manager:

  • npm install genkitx-aws-bedrock
  • pnpm add genkitx-aws-bedrock

if you are using Genkit version <v0.9.0, please use the plugin version v1.9.0. If you are using Genkit >=v0.9.0, please use the plugin version >=v1.10.0.

To use the plugin, you need to configure it with your AWS credentials key. You can do this by calling the genkit function:

import { genkit, z } from 'genkit';
import {awsBedrock, amazonNovaProV1} from "genkitx-aws-bedrock";

const ai = genkit({
plugins: [
awsBedrock({ region: "<my-region>" }),
model: amazonNovaProV1,
]
});

You can also intialize the plugin in this way if you have set the AWS_ environment variable:

import { genkit, z } from 'genkit';
import {awsBedrock, amazonNovaProV1} from "genkitx-aws-bedrock";

const ai = genkit({
plugins: [
awsBedrock(),
model: amazonNovaProV1,
]
});

The simplest way to call the text generation model is by using the helper function generate:

import { genkit, z } from 'genkit';
import {awsBedrock, amazonNovaProV1} from "genkitx-aws-bedrock";

// Basic usage of an LLM
const response = await ai.generate({
prompt: 'Tell me a joke.',
});

console.log(await response.text);
// ...configure Genkit (as shown above)...

export const myFlow = ai.defineFlow(
{
name: 'menuSuggestionFlow',
inputSchema: z.string(),
outputSchema: z.string(),
},
async (subject) => {
const llmResponse = await ai.generate({
prompt: `Suggest an item for the menu of a ${subject} themed restaurant`,
});

return llmResponse.text;
}
);
// ...configure Genkit (as shown above)...

const specialToolInputSchema = z.object({ meal: z.enum(["breakfast", "lunch", "dinner"]) });
const specialTool = ai.defineTool(
{
name: "specialTool",
description: "Retrieves today's special for the given meal",
inputSchema: specialToolInputSchema,
outputSchema: z.string(),
},
async ({ meal }): Promise<string> => {
// Retrieve up-to-date information and return it. Here, we just return a
// fixed value.
return "Baked beans on toast";
}
);

const result = ai.generate({
tools: [specialTool],
prompt: "What's for breakfast?",
});

console.log(result.then((res) => res.text));

For more detailed examples and the explanation of other functionalities, refer to the official Genkit documentation.

This plugin supports all currently available Chat/Completion and Embeddings models from AWS Bedrock. This plugin supports image input and multimodal models.

You can find the full API reference in the API Reference Documentation

Want to contribute to the project? That's awesome! Head over to our Contribution Guidelines.

Note


This repository depends on Google's Firebase Genkit. For issues and questions related to Genkit, please refer to instructions available in Genkit's repository.

Reach out by opening a discussion on GitHub Discussions.

This plugin is proudly maintained by Xavier Portilla Edo Xavier Portilla Edo.

I got the inspiration, structure and patterns to create this plugin from the Genkit Community Plugins repository built by the Fire Compnay as well as the ollama plugin.

This project is licensed under the Apache 2.0 License.

License: Apache 2.0